Continuous and Prolonged Infusions of Beta Lactams

Elizabeth O. Hand, Pharm.D., BCPS
Clinical Assistant Professor
The University of Texas at Austin College of Pharmacy
Pediatric Infectious Disease Pharmacist
University Hospital, San Antonio TX

Quick Poll...

• How many utilize prolonged or continuous infusion antibiotic regimens at their hospital?

• How many utilize this strategy in ALL patients on select beta lactams? (piperacillin/tazobactam, meropenem, ceftazidime)

Objectives

• Technician Objectives:
 – Explain the rationale for PI/CI of beta lactams
 – List 2 antimicrobials that are not ideal for CI
 – Describe potential downsides of PI/CI of beta lactams

• Pharmacist Objectives:
 – Explain the pharmacokinetic and pharmacodynamics benefits of PI/CI of beta lactams
 – Evaluate clinical literature related to the use of PI/CI
 – Describe clinical situations in which PI/CI of beta lactams may not be ideal

Where to Begin?!

• OVERWHELMING literature
 – Improved “target attainment”?
 – Improved microbiologic clearance?
 – Improved survival?
 – No benefit?
 – Worse clinical outcomes?

• Important disclaimers....

The Fine Print

• Nothing is exact in infectious disease
• BUG vs. DRUG interactions change when you throw in DOUG
• Beta lactam levels not routinely be utilized, so we’re all guessing
• We don’t always have MIC data
• Must combine what we know with our best clinical judgment
 – One size likely does NOT fit all
Outline

- Why even extend beta lactam infusions?
 - Time dependent vs. concentration dependent bacterial killing
- In vitro, simulated patient, and actual patient data
- Most studied beta lactams
- Practical application
 - Special populations

Time-Dependent vs. Concentration-Dependent

- f%T>MIC
 - % of time where free drug concentration exceeds the MIC
 - Minimum inhibitory concentration: minimum amount of drug that inhibits bacterial growth
- Cmax:MIC ratio
 - Ratio of maximum serum concentration to MIC
- AUC₂₄/MIC
 - Total drug exposure in 24 hours that exceeds the MIC

Pharmacodynamics

Examples

- Concentration dependent
 - Fluoroquinolones
 - Daptomycin
 - Aminoglycosides
- Time dependent
 - Metronidazole
 - Linezolid
 - Tetracyclines
 - BETA LACTAMS
 - Penicillins, cephalosporins, carbapenems

Which is Which?

Continuous vs. Intermittent

Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Disease. 7th edition. 2010.
How much time > MIC?

- Depends on the beta lactam
 - Cephalosporins > penicillins > carbapenems
- Generally ~ 50%
 - Some evidence 100% time > MIC may improve clinical and microbiologic outcomes
- Killing maximized at 4-5x MIC

The DALI Study

- DALI= “Defining Antibiotic Levels in ICU patients”
- 248 infected patients, multicenter
 - 16% not achieving 50% fT>MIC → 32% less likely to have positive clinical outcome
 - 7% with prolonged infusion vs. 20% with intermittent
 - 100% fT>MIC associated with improved clinical outcome compared to 50%

Beta Lactams Covered

- Piperacillin-tazobactam
 - Most clinical data
 - “Vitamin Z”
- Carbapenems
 - Meropenem
 - Doripenem
 - Drugs for the bad bugs
- Ceftazidime
 - Early data on continuous infusions
 - Culture directed therapy for Pseudomonas

Achieving Targets in the ICU

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>50% Time > MIC</th>
<th>100% Time > MIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piperacillin-tazobactam</td>
<td>71.6</td>
<td>91.4</td>
</tr>
<tr>
<td>Meropenem</td>
<td>93.0</td>
<td>93.0</td>
</tr>
<tr>
<td>Doripenem</td>
<td>92.0</td>
<td>93.0</td>
</tr>
</tbody>
</table>

Why Not ALL Beta Lactams?

- Stability too short
 - Ampicillin, ceftaroline
- Not necessary due to long half-life
 - Ertapenem, ceftriaxone
- Other beta lactams given continuously that we won’t cover
 - Cefazolin, penicillin, oxacillin
Piperacillin-tazobactam

- Workhouse Gram negative antimicrobial
 - Standard dosing:
 - 3.375 grams IV every 6 hours OR 4.5 grams IV every 8 hours
 - 4.5 grams IV every 6 hours (nosocomial pneumonia)
 - Infused over 30 minutes
 - Cmax following 4.5 gram dose is ~300 mcg/mL (30% protein bound)
 - Half life ~1 hour

When is Something Pip/Tazo Susceptible?

- Enterobacteriaceae
 - MIC ≤16 mcg/mL
- Pseudomonas aeruginosa
 - MIC ≤16 mcg/mL
 - Previously ≤64 mcg/mL
 - Increased clinical failures for Paeruginosa isolates with MICs 32-64 mcg/mL

What Changes with PI?

- 4.5 grams IV every 8 hours as a 4 hour infusion
 - 13 hospitalized patients
 - 7 ICU
 - Age ~50, weight ~80kg
 - Cmax: 108.2 mcg/mL (+/- 31.7)
 - Cmin: 27.6 mcg/mL (+/- 26.3)
 - PD target attainment (50% FT>MIC) rates
 - 100% at MICs <16 mcg/mL

Do PIs Improve Outcomes?

- Cohort study of 194 patients
- Pip/tazo 3.375 grams every 4 or 6 hours vs. 3.375 grams every 8 hours as a 4 hour infusion
- 14 day mortality significantly lower with PI for patients with APACHE II ≥17
 - 12.2% vs. 31.6% (p<0.04)
- Shorter median hospital LOS in PI arm

Achieving PD Targets

TABLE 1 STEADY STATE MEAN PLASMA CONCENTRATIONS IN ADULTS AFTER
30-MINUTE INTRAVENOUS INFUSION OF PIPERACILLIN/TAZOBACTAM EVERY 6
HOURS

<table>
<thead>
<tr>
<th>Piperacillin</th>
<th>Plasma Concentrations** (μg/mL)</th>
<th>AUC** (μg•h/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose*</td>
<td>No. of Evaluables</td>
<td>30 min</td>
</tr>
<tr>
<td>2.25 g</td>
<td>8</td>
<td>134 (14)</td>
</tr>
<tr>
<td>3.375 g</td>
<td>6</td>
<td>242 (12)</td>
</tr>
<tr>
<td>4.5 g</td>
<td>8</td>
<td>298 (14)</td>
</tr>
</tbody>
</table>

Infect Dis 2007; 44: 357

Pip/Tazo: CI vs II in Sepsis

- Retrospective cohort study
- 173 propensity score matched pairs
 - 16 grams piperacillin/24 hours
- Similar mortality rates
 - ICU
 - CI vs. II: 23.7% vs. 20.2% (p=0.512)
 - In hospitl
 - CI vs. II: 41.6% vs. 40.5% (p=0.913)

Time for a Pause

- TONS of literature on clinical outcome with pip/tazo prolonged/extended/continuous infusions
- No benefit vs. improved outcomes
 - Is there a difference or not??

Evaluation of Clinical Trials

Figure 4. The summary of the current limitations and fixed associated with the available clinical trials.

Meropenem

- Standard dose= 500 mg- 2 grams every 8 hours
- Peak serum concentration after 30 minute infusion
 - ~25 mcg/mL for 500 mg dose
 - ~50 mcg/mL for 1 gram dose
- Very low protein binding
- Half life ~ 1 hour
- Short stability at room temperature
 - ~4 hours (per manufacturer)
- Post antibiotic effect (PAE) seen

What’s Considered Susceptible?

- Enterobacteriaceae
 - ≤1 mcg/mL
 - Based on a dose of 1 gram every 8 hours
- Pseudomonas aeruginosa
 - ≤2 mcg/mL
 - 1 gram every 8 hours
- 500 mg every 6 hours appears to be similar to 1 gram every 8 hours

Mero PI and CI

- Continuous (4 grams/24 hours)
 - Not so fast... stability issues
 - Higher clinical cure rates than intermittent infusion in Gram-negative VAP (90.5% vs 59.6%, OR 6.44, 95% CI 1.97-21.05, p<0.001)
 - Similar clinical cure with higher microbiologic clearance in septic patients
- Prolonged
 - Typically over 3 hours due to stability
 - Shown to have equal or improved clinical outcomes when compared to intermittent infusions

Mero PI Kinetics

Figure 1. Mean steady-state serum concentration-time profile of meropenem 0.5 g (O) and 2 g (D) administered as a 3-hour infusion.

Practical Uses of Meropenem

- Empiric therapy in patients at high risk of infections with resistant organisms
- Culture-directed therapy
 - MDR pathogens
- Pneumonia, bacteremia, intra-abdominal infections... but what about meningitis?

Meropenem PI for CNS Infections

- Effective in cases of severe Gram negative infections in the CNS
- MICs fairly low in all cases

Ceftazidime

- Anti-Pseudomonal cephalosporin
- Commonly utilized agent for pulmonary exacerbations of cystic fibrosis
- Standard dose= 1-2 grams every 8 hours
 - 8 grams/day has been used in severe Gram negative infections
- Half life ~2 hours in healthy volunteers
- Largely replaced by cefepime in many institutions

Table 1. Average Serum Concentrations of Ceftazidime

<table>
<thead>
<tr>
<th>IV Dose</th>
<th>0.5 hr</th>
<th>1 hr</th>
<th>2 hr</th>
<th>4 hr</th>
<th>8 hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 mg</td>
<td>42</td>
<td>25</td>
<td>12</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>1 g</td>
<td>60</td>
<td>39</td>
<td>23</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>2 g</td>
<td>129</td>
<td>75</td>
<td>42</td>
<td>13</td>
<td>5</td>
</tr>
</tbody>
</table>

- What’s susceptible?
 - Enterobacteriaceae
 - ≤4 mcg/mL
 - Based on a dose of 1 gram every 8 hours
 - Pseudomonas aeruginosa
 - ≤8 mcg/mL
 - 1 gram every 6 hours

Ceftazidime: CI vs II

- 12 critically ill patients
- PK/PD analysis
- 7/12 patients achieved target ceftazidime steady state levels with CI
 - *4 patients with sub-therapeutic levels**
 - No clinical outcome data

A Little More Ceftaz Never Hurt Anyone

- 18 critically ill patients randomized to one of two regimens
- 6 grams/24 hours CI vs. 2 grams every 8 hours
- 8/9 patients in CI arm maintained serum levels 4-5x MIC

Clinical Outcomes > PK/PD

- Ceftazidime II vs. CI in ICU patients with VAP
 - II= 2 grams every 12 hours
 - CI= 1 gram load followed by 4 grams CI/24 hours
 - Average MIC= 2 mcg/mL
 - CI associated with greater clinical cure rate
 (OR 12.2, 95% CI 3.47-43.21; p<0.001)

Some Take Home Points... So Far

- Know what you’re treating
- Know you’re patient
- Recognize variations in dosing schemes used in clinical trials/reports of prolonged and continuous infusions

CI/PI in Pediatrics

- Differences in children and adults
 - Larger Vd
 - Increased renal elimination
 - Particularly true in patients with cystic fibrosis
- Similar results to adult studies
 - Improved target attainment with PI/CI
 - Surprisingly poor target attainment with standard doses of many beta lactams
- Loading doses encouraged
- Would not recommend dropping total daily dose

Some Take Home Points... So Far

- Know what you’re treating
- Know you’re patient
- Recognize variations in dosing schemes used in clinical trials/reports of prolonged and continuous infusions

A Point of Caution?

A randomized trial of 7-day doripenem versus 10-day imipenem-cliastatin for ventilator-associated pneumonia

- Doripenem 1 gram every 8 hours as a 4 hour infusion vs. imipenem 1 gram every 8 hours as a 1 hour infusion
- Stopped prematurely- didn’t mean non-inferiority margin
 - Lower clinical cure rate in doripenem arm
 - Higher mortality in patients with VAP due to _P. aeruginosa_ treated with doripenem

Is It Just Dori?

- Before and after study at Barnes Jewish
- Prolonged (3 hour) infusion vs. intermittent infusion
 - Cefepime (51%), meropenem, piperacillin/tazobactam
- NO loading doses given
- No difference in treatment success rates, in hospital mortality, length of stay
 - Longer time to mortality in intermittent infusion group (36 vs. 19 days, p <0.001)
Implementation of Pip/Tazo PI

- 4.5 grams every 8 hours as a 4 hour infusion
- What’s good for the goose may not be good for the gander...
 - Obese patients (>100 kg)
 - Young patients with expected rapid renal elimination
 - Lower than expected levels with CrCl >100 mL/min
 - Critically ill
 - Not currently recommended by cystic fibrosis guidelines

Not All Patients Are Created Equally

- Healthy volunteers are not patients

- Critically ill patients are not regular patients
 - Variations in volumes of distribution
 - Alternations in renal clearance
 - Decreased protein binding
 - More free drug to be cleared

- Children are not small adults

Where I Would Use PI/CI

- Critically ill patients

- Culture-directed therapy for pathogens with elevated MICs

- Patients with rapid renal elimination
 - Be cautious of dropping the total daily dose too much

- First dose should be a load

QUESTIONS? COMMENTS?